Posets Arising as 1-skeleta of Simple Polytopes, the Nonrevisiting Path Conjecture and Poset Topology

Patricia Hersh

North Carolina State University

- with thanks to Karola Mészáros for fruitful discussions early in project
Linear Programming

• Given a matrix A and vectors \mathbf{b}, \mathbf{c} seek $\max \{ \mathbf{c}^T \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b} \}$

• $\{ \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b} \}$ is polytope P

if set is bounded

e.g. $A \mathbf{x} = \mathbf{b}$

\[
\begin{pmatrix}
-1 & 0 \\
0 & -1 \\
1 & 2
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
\leq
\begin{pmatrix}
5 \\
0 \\
2
\end{pmatrix}
\]

\[x_1 \leq 0 \]

\[x_1 + 2x_2 \leq 2 \]

\[-x_2 \leq 0\]
Solving Linear Programs via Simplex Method

- Define \(G(P,z) \): directed graph on 1-skeleton of \(P \), i.e. on vertex-edge graph of \(P \), with
 \[x_1 \rightarrow x_2 \iff \overrightarrow{c} \cdot \overrightarrow{x}_1 < \overrightarrow{c} \cdot \overrightarrow{x}_2 \]

- \(\max \{ \overrightarrow{c} \cdot \overrightarrow{x} | A \overrightarrow{x} \leq \overrightarrow{b} \} = \text{sink of } G(P,z) \)

Simplex Method: walk from some vertex \(v \in G(P,z) \) following arrows
\[v \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow s \]
to sink \(s \)
- also may walk backwards to source of \(G(P,z) \) to minimize \(z \cdot \overrightarrow{x} \)
Pivot Rule: method to choose which out arrow \(\rightarrow \) to follow from \(v \) towards sinks \(s \).

Key Questions:

1. What is typical complexity of simplex method (path length)?

2. What is worst case? (i.e. diameter of \(G(P, E) \))
An Example: Traveling Salesman Problem

Polytope Vertices:

\[(1,0,1,1,0,1), (1,1,0,0,1,1), \allowbreak (0,1,1,1,1,1,0)\]

Cost Vector:

\[\vec{c} = (2.5, 7, 1.1, 3.4, 8, 1, 6)\]
Hirsch Conjecture: For d-dim' polytopes with n facets (max' l faces), diameter of 1-skeleton graph, denoted $\Delta(d,n)$, satisfies $\Delta(d,n) \leq n-d$.

Francisco Santos: Counterexamples!

Nonrevisiting path conjecture: For each u,v in polytope P, there is path $u \to v$ not revisiting any facet it has left.

Non-Revis. Path Conj \implies Hirsch Conj, (by giving short path) so BOTH FALSE!
Our Plan

Impose further conditions on P and \overline{P} that will imply a corollary of the following which we hope might also hold:

For each $u, v \in P$, each directed path from u to v never revisits any facet it has left.

This property would make all pivot rules efficient for P and \overline{P}.
Quick Background on Polytopes

- A polytope in \mathbb{R}^d is convex hull of finite # vertices, or equivalently a bounded set that is an intersection of half spaces.

- A polytope is simple if for each vertex v and each collection e_1, e_2, \ldots, e_r of edges emanating out from v there is an r-dim face containing all these edges.

 e.g. v but not v
New Def'n: $G(P, c)$ has the Hasse diagram property if it is Hasse diagram of finite poset, i.e. $v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_r$ for $r \geq 3$ directed path precludes $v_1 \rightarrow v_r$

Important Non-Examples: "Klee-Minty Cubes" (1st known examples s.t. simplex method not efficient!

- Path visits all vertices!

\mathbf{n}-dim $P = \{ (x_1, \ldots, x_n) | 0 \leq x_i \leq 1, 3 \leq x_i < 1 - 3x_i, 0 < x_i < 1 \}$ for $i > 1$
Lemma: Given $F \subseteq G$ with $\dim(G) = \dim(F) + 1$ in simple polytope P with generic \vec{c} s.t. $G(P, \vec{c})$ is a Hasse diagram, then there does not exist $v, w \in F$ with directed path P_f from v to w in F, outward oriented edge v to $G \setminus F$ and inward oriented edge $G \setminus F$ to w.
Corollary: Monotonicity of out-degrees & partial outward directions.

3 violate Hasse diagram (at switch from out to in)

Corollary: For each face $F \in \mathcal{P}$ with $\hat{O}EF$ or $\hat{I}EF$, directed paths cannot revisit F after departing from it.
Recall: A poset L is a lattice if for each $u,v \in L$ there exists unique least upper bound ("join") for u and v, denoted $u \vee v$, and unique greatest lower bound for u and v ("meet"), $u \wedge v$.

Note: for P simple $\& G(P, \vec{e})$ Hasse diagram, an upper bound for u, v both covering x is sink of unique 2-face containing x, u, v.
"Pseudo-joins" in a Polytope

Let \(P \) be simple polytope w/ generic cost vector \(\vec{c} \) such that \(G(P, \vec{c}) \) is Hasse diagram of poset \(L \) with \(x_1, x_2, \ldots, x_r \in L \) s.t. there exists \(u \in L \) with \(u < x_i \) for \(i = 1, 2, \ldots, r \). Define pseudo-join of \(x_1, x_2, \ldots, x_r \) as sink of unique \(r \)-face of \(P \) containing \(x_1, x_2, \ldots, x_r \).

Lemma: \(S \neq T \Rightarrow \text{pseudo}(S) \neq \text{pseudo}(T) \)
Note: Since pseudo-join of \(x_1, \ldots, x_r\) is an upper bound, there exists directed path from \(x_1, u \cdots u, x_r\) to \(\text{pseudo-join}(x_1, \ldots, x_r)\)

Thm: Let \(P\) be a simple polytope and \(\vec{c}\) be generic cost vector with \(G(P, \vec{c})\) Hasse diagram of finite lattice. Then
\[\text{pseudo-join}(x_1, x_2, \ldots, x_r) = x_1, u \cdots u, x_r\]

Pf: induction on \(r\) with \(r=2\), base case especially tricky part.
Recall: The order complex of poset P, denoted $\Delta(P)$, is an abstract simplicial complex whose i-faces are chains $v_0 < v_1 < \ldots < v_i$.

Thm: Let P be a simple polytope with generic cost vector \mathbf{c} such that $G(P, \mathbf{c})$ is the Hasse diagram of a finite lattice L. Then each open interval $(u, v) = \{ z \in L | u < z < v \}$ has order complex homotopy equivalent to a ball or a sphere.
Applications to Poset Topology

\[
\begin{array}{c|c|c}
\text{polytope } P & \mapsto & \text{poset on } G(P, \mathcal{C}) \\
\end{array}
\]

- permutohedra \(\mapsto\) weak order

- associahedra \(\mapsto\) Tamari lattice

- generalized associahedra \(\mapsto\) Cambrian lattices
Permutahedron is Weak Order

- cost vector \mathbf{c} any strictly ascending vector such as $\mathbf{c} = (1, 2, 3, 4)$.

- Homotopy type 1st due to Edelman (type A) & Björner.
Associahedron as Tamari Lattice

- Use Laday's realization
- Poset of binary trees with cover relations: \(\preceq \)

\[
(a,b), c \quad (a, (b,c))
\]

- Homotopy type is due to Björner & Wechs via nonpure lexicographic shellability.
Some Further Questions

Qn 1: Other examples?

Qn 2: Does P simple + G(P, ≥) Hasse diagram of lattice => no directed path can revisit face it has departed? (If not, variations?)

Thanks!!