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ABSTRACT. D. Bisch and V.F.R. Jones defined the Fuss-Catalan algebras as
a generalization of the Temperley-Lieb algebras and obtained a dimension
formula in [BJ] using generating functions. Landau proved further results
about Fuss-Catalan algebras in [La]. We provide a combinatorial proof of the
dimension formula by giving a bijection between a class of planar trees which
naturally corresponds to Fuss-Catalan generators and another class of trees
which clearly has cardinality 1 (**1").

n

We shall give a bijective proof that the dimension of the Fuss-Catalan algebra is
ﬁ ((kfll)"). This will restrict to a proof of the dimension of the Temperley-Lieb
algebra, so let us begin by reviewing the Temperley-Lieb bijection. Each Temperley-

Lieb algebra generator may be represented by a wire diagram as in Figure 1.
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F1cURE 1. A Temperley-Lieb generator

Place a tree node in each region of the diagram and an edge between any two
adjacent regions. In this manner, each wire diagram gives rise to a rooted unlabelled
planar tree, and one may easily check that this gives a bijection between trees on
n 4+ 1 nodes and wire diagrams with n wires. Dashed lines represent the edges of
such a tree in Figure 2.

The Fuss-Catalan algebra FC(n,a1,...,ar) is generated by those Temperley-
Lieb generators with kn wires which have a property we refer to as k-consistency.
An example is given in Figure 3. When the the endpoints of the wires in a wire dia-
gram are labelled left to right by a sequence of the form ay,as,...,a_1, a0k, G, a1,
...,02,0G1,01,02,-..,02,a1 which has length a multiple of 2k, then the labels of
the two endpoints for each wire are required to agree for a wire diagram to be
k-consistent.

This work was supported by a Hertz Foundation Graduate Fellowship.
1



2 PATRICIA HERSH

® o@o

FIGURE 2. An example of the Temperley-Lieb bijection

(1] (12 (3 (3 (12 (1 (1 a2 a3
@ @

’\/"\’\/’/’

F1GURE 3. A Fuss-Catalan generator

This leads to a class of planar trees which we call k-consistent trees by applying
the Temperley-Lieb bijection to the wire-diagrams associated to Fuss-Catalan gen-
erators. We shall provide a bijection between k-consistent trees and another class
of trees which is easily seen to have the desired cardinality. We will refer to this
latter class of trees as k-step trees. When k = 1, all unlabelled rooted planar trees
are both k-step and k-consistent.

Definition 0.1. An unlabelled rooted planar tree is k-consistent if the edges may
be labelled with a sequence 1,2,...,k—1,k, k, k—1,...,2,1,1,2,...,k,k—1,...,2,1
in the following way: edges are labelled by the sequence in the order they are en-
countered in a depth-first search; each edge is visited twice, but for k-consistency
we require that the label assigned to each edge on its downward pass agrees with the
label assigned on the upward pass.

This condition on trees corresponds via the Temperley-Lieb bijection to the
requirement that wires in Fuss-Catalan generators must have endpoints which agree;
a depth-first search of a tree crosses the wires sequentially, with the labels of the
downward and upward passes through each tree edge corresponding to the labels
of the two endpoints of a wire.

Definition 0.2. An wunlabelled rooted planar tree is a k-step tree if a depth first
search of the tree may be broken into downward steps consisting of k consecutive
edges and upward steps of a single edge.

A depth first search of a k-step tree may be encoded by a sequence of interspersed
d’s and u’s: there are n downward steps represented by d’s and kn upward steps
given by w’s. Such a sequence is associated to a k-step tree if and only if for each
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1 <@ < (k+1)n, the number of u’s occuring before position 7 in the sequence is at
most k times the number of d’s. There are ﬁ ((ktbl)") such sequences of length
(k 4+ 1)n by the standard argument for counting Catalan numbers (cf. [St]). We
will refer to these sequences of d’s and u’s as k-Catalan sequences and use them

interchangeably with k-step trees.

Theorem 0.1. There is a bijection between k-step trees on km + 1 nodes and k-
consistent trees on km + 1 nodes.

ProoF. We give an invertible map ¢ from k-step trees to k-consistent trees by
specifying how to construct a k-consistent tree from a k-Catalan sequence. Figure
3 provides a very simple example of this bijection.

k-step k-consistent

FIGURE 4. An example for k = 3

A Ek-Catalan sequence gives rise to a k-step tree by specifying a depth-first search
of the tree; we shall push and pop numbers on a stack to record (in a reversible way)
alterations to the depth-first search which lead to the corresponding k-consistent
tree. The k-step tree is obtained by taking k consecutive downward steps for each d
in the sequence and a single upward step for each u. To turn this into a k-consistent
tree, each time a d is encountered immediately after a u, we record the total number
of edges traversed so far mod k (keeping track of edge multiplicity, since each edge
is visited twice altogether) and push this number ¢ along with the current node
N on a stack. Instead of travelling down k steps to account for this d, we travel
down k — i steps in the tree; we will later pop the number ¢ off the stack and at
that time travel ¢ extra steps downward. Thus we postpone 7 downward steps in a
way ensures k-consistency. We proceed in the tree construction blind to this shift
until we revisit the node at which i was placed on the stack, that is, the node N
which we encountered immediately before traveling down k —i steps. At this point,
(¢, N) will be at the top of the stack and is popped off the stack. The shift of
downward steps is now completed by inserting i downward steps from the node N
before continuing to read off the k-Catalan sequence.

Let us check that each tree thus obtained is k-consistent. First note that the
number of edges encountered between any two leaves (with the root treated as a
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leaf) is a multiple of k, because we travel a multiple of k steps between the root
and each leaf after shifting. This implies k-consistency each time we begin to travel
upward from a leaf. We refer to a tree node as a branch point if it has at least two
children and none of its descendents are branch points. Consider the last branch
point encountered on the initial downward path in a depth first search from the
root. The number of edges in the subtree below this branch point must be congruent
to k —i mod 2k where i is the number of edges traversed mod k in travelling from
the root to this branch point; this is again a consequence of shifting. This implies
that we may inductively reduce the task of showing k-consistency by eliminating
the subtree below this branch point and deleting the corresponding subsequence of
length congruent to 2(k —i) mod k from the k-Catalan sequence which gives rise to
this tree; simply note that the upward step from the branch point will be consistent
with the downward step through that edge. Induction this gives k-consistency
Finally, ¢—! exists because we may recover the k-Catalan sequence by a depth
first search of a k-consistent tree which reverses the shifting which must have oc-
cured. That is, we record a d for each k consecutive downward steps, a u for each
upward step, and when we may only travel 0 < i < k downward steps before reach-
ing a leaf, we record a d in the sequence and push an i on the stack. When we first
revisit the node where we put ¢ on the stack, we ignore the next ¢ downward steps
in recording a k-Catalan sequence and pop i off the stack. It is not hard to check
that this map is well-defined and that it is the inverse of the map from k-Catalan
sequences to k-consistent trees. O
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