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Abstract. Geometric lattices are characterized as those finite,
atomic lattices such that every atom ordering induces a lexico-
graphic shelling given by an edge labeling known as a minimal
labeling. Equivalently, geometric lattices are shown to be exactly
those finite lattices such that every ordering on the join-irreducibles
induces a lexicographic shelling. This new characterization fits into
a similar paradigm as McNamara’s characterization of supersolv-
able lattices as those lattices admitting a different type of lexico-
graphic shelling, namely one in which each maximal chain is labeled
with a permutation of {1, . . . , n}.

1. Introduction

In [7], McNamara proved that supersolvable lattices can be charac-
terized as lattices admitting a certain type of EL-labeling known as
an Sn-EL-labeling. Each maximal chain is labeled by the set of labels
{1, . . . , n} with each label used exactly once in each maximal chain.
Previously, Stanley had proven that all supersolvable lattices admit
such EL-labelings in [10]. Thus, McNamara’s result gave a new charac-
terization of supersolvable lattices: that a finite lattice is supersolvable
if and only if it has an Sn-EL-labeling.

This paper gives a result of a similar spirit for geometric lattices –
a new characterization of geometric lattices as the lattices admitting
a family of lexicographic shellings induced by the various possible or-
derings on the join-irreducibles. Geometric lattices are well-known to
have the property that every atom ordering induces an EL-labeling by
labeling each cover relation ul v with the smallest atom that is below
v but not u. Our main result is that this is a characterization of geo-
metric lattices, i.e. that all finite atomic lattices in which every atom
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ordering induces an EL-labeling are geometric lattices. We also prove
a reformulation in which the atomicity requirement is removed (fol-
lowing a suggestion of Peter McNamara): that if every ordering of the
join-irreducibles in a finite lattice induces an EL-labeling are geometric
lattices.

There is an extensive literature on the notion of lexicographic shella-
bility. Most of the emphasis is on proving that important classes of
partially ordered sets admit lexicographic shellings. For example, up-
per semimodular lattices (Garsia [6]), geometric lattices (Stanley [11],
Björner [3]) and semilattices (Wachs-Walker [13]), supersolvable lat-
tices (Stanley [10]), subgroup lattices of solvable groups (Shareshian [9],
Woodroofe [14]), and Bruhat order (Björner-Wachs [5]) are all known to
be lexicographically shellable. Our aim is to take things in the opposite
direction, namely to use the types of lexicographic shellings (induced
by EL-labelings) that geometric lattices are known to have as a way of
characterizing geometric lattices.

One of the primary combinatorial motivations for the notion of lex-
icographic shellability is as a tool to compute Möbius functions. In
particular, geometric lattices arise as the intersection lattices of real,
central hyperplane arrangements, and there is special interest in know-
ing their Möbius functions resulting from this interpretation in terms
of hyperplane arrangements, for the following reason. Zaslavsky ex-
pressed the number of regions in the complement of a real hyperplane
arrangement in terms of Möbius functions of geometric lattices and
semi-lattices in [15].

McNamara’s characterization of supersolvable lattices has given a
useful new way of proving new classes of lattices to be supersolvable.
See e.g. [1] for one such result. Our results will imply there is a similar
potential for geometric lattices.

2. Background and terminology

Let P be a finite poset. Let E(P ) denote the set of edges of the
Hasse diagram of P . We write x l y to indicate that y covers x in
P , namely x ≤ z ≤ y implies z = x or z = y. If λ : E(P ) → N is
an edge labeling of the Hasse diagram of P and x l y, then we write
λ(x, y) to indicate the label given to the edge from x to y. Recall
that λ is an EL-labeling for P if for every interval [x, y] of P , there
is a unique rising chain C := x = x1 l x2 l · · · l xj = y where
λ(x, x2) ≤ λ(x2, x3) ≤ · · · ≤ λ(xj−1, y), and the label sequence of
C is lexicographically smaller than the label sequence of every other
saturated chain in the interval [x, y] (cf [3]). It is well-known that an
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EL-labeling gives a shelling order for the facets (maximal faces) of the
order complex ∆(P ) of P .

We now review the notion of geometric lattice as well as the types
of EL-labelings which they are already known to possess. An atom in
a poset P with unique minimal element 0̂ is any a ∈ P such that a
covers 0̂. A lattice is a poset such that any pair of elements x, y has
a unique least upper bound x ∨ y and a unique greatest lower bound
x ∧ y. A lattice is atomic if every element is a join of atoms. A lattice
is semimodular if it has a rank function ρ this satisfies

(i) ρ(x ∧ y) + ρ(x ∨ y) ≤ ρ(x) + ρ(y).

A finite lattice is geometric if it is atomic and semimodular. An
element x in a lattice is a join-irreducible if x = y ∨ z implies y = x or
z = x. See [12] for further background on posets.

Our interest is in using the existence of a certain family of edge
labelings for a poset P to show that P fits into an important class of
posets, namely the geometric lattices. Therefore, let us now introduce
these types of labelings we will use.

Let L be a finite lattice with n join-irreducibles. Let J(L) denote
the set of join-irreducibles of L. For x ∈ L, let

J(x) = {w ≤ x|w ∈ J(L)}.

Further, given a bijection γ : J(L) → [n], let γ(J(x)) denote the set
{γ(w)|w ∈ J(x)}. The map γ induces a minimal labeling λγ : E(L)→
[n] by the rule λγ(x, y) = min{γ(J(y)) \ γ(J(x))}.

Let A(L) denote the atoms of L, and for x ∈ L let A(x) = {a ≤
x|a ∈ A(L)}. Note that in an atomic lattice L we have J(L) = A(L).
So for an atomic lattice, our definition coincides with Björner’s original
definition of a minimal labeling.

Theorem 1 (Björner [3]). The minimal labeling resulting from any
ordering of the atoms in a geometric lattice is an EL-labeling.

The following proposition, which appears as Corollary 1, p. 81, in
[2], gives a convenient property often referred to as the ‘diamond prop-
erty’. It implies not only the existence of a rank function, but also the
inequality (i) above.

Proposition 2 (Birkhoff). Let L be a finite lattice. The following two
conditions are equivalent:

• L is graded, and the rank function ρ of L satisfies the semimod-
ularity condition (i) above.
• If x and y both cover x ∧ y, then x ∨ y covers both x and y.
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3. Lexicographic shellability characterizations of
geometric lattices

The section is devoted to developing two new characterization of
geometric lattices, one based on atom orderings and the other based
on orderings on join-irreducibles. In both cases, we prove that finite
lattices in which every ordering of the atoms (resp. join-irreducibles)
induces a so-called minimal labeling which is an EL-labeling are geo-
metric lattices. To this end, we first develop some helpful properties of
minimal labelings.

Lemma 3. Let L be a finite atomic lattice and let λγ be a minimal
labeling of E(L). Then for each chain C = x1l · · ·lxk, λγ(xi, xi+1) 6=
λγ(xj, xj+1) whenever i 6= j. In other words, the labels on any particu-
lar saturated chain are distinct.

Proof. This is immediate from the fact that A(xj+1) \A(xj) is by defi-
nition disjoint from A(xi+1) \ A(xi) for i 6= j. �

Lemma 4. Let L be a finite atomic lattice. If A(u) ⊆ A(v), then
u ≤ v.

Proof. This follows since L is atomic and every element is written as a
join of atoms. �

Remark 1. In fact, we will make use of the following statement that is
equivalent to Lemma 4: if v is not less than or equal to u then there
exists av ∈ A(v) such that av /∈ A(u).

Lemma 5. Let L be a finite atomic lattice. Suppose that x, y ∈ L both
cover x ∧ y, but that x ∨ y does not cover x. Given any atom ay such
that y = (x ∧ y) ∨ ay then ay /∈ A(z) for all z such that xl z.

Proof. Assume a ∨ (x ∧ y) = y and a ≤ z. Since x ∧ y ≤ z, we have
y = a ∨ (x ∧ y) ≤ z, implying x ∨ y ≤ z, a contradiction. �

Now to our two characterizations of geometric lattices.

Theorem 6. Let L be a finite, atomic lattice such that every atom
ordering induces a minimal labeling that is an EL-labeling. Then L is
geometric.

Proof. Since a geometric lattice is a finite, semi-modular, atomic lat-
tice, it will suffice to prove that L is graded with a rank function ρ
satisfying ρ(x ∧ y) + ρ(x ∨ y) ≤ ρ(x) + ρ(y), i.e. with rank function
satisfying (i) above. Then we will take any pair of elements x, y both
covering x ∧ y but not both covered by x ∨ y and construct an atom
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ordering in terms of x and y whose minimal labeling will not be an
EL-labeling.

Assume by way of contradiction that for all γ, λγ is an EL-labeling
but the “diamond property” does not hold. In other words, suppose
that there exist x, y ∈ L such that x and y both cover x ∧ y but x ∨ y
does not cover at least one of x and y. Note this immediately implies
that L has at least three atoms, because the structure of a two-atom
atomic lattice must be a diamond. Assume without loss of generality
that x ∨ y does not cover x.

Assume by way of contradiction that x ∧ y l x and x ∧ y l y, but
x ∨ y does not cover x. By Lemma 4, we can choose some atom ax ∈
A(x) \ A(x ∧ y) such that ax 6∈ A(y). Since L is an atomic lattice,
there must exist ay ∈ A(y) such that (x ∧ y) ∨ ay = y. By Lemma 5,
ay /∈ A(z) for any z such that x l z. Clearly ay 6= ax, or else we
would have ay ∈ A(x) ⊆ A(z) for any z covering x, a contradiction.
Let γ : A(L) → [n] be any atom ordering such that γ(ax) = 1 and
γ(ay) = 2.

Since ax ∈ A(x) \ A(x ∧ y) and γ(ax) = 1, we know that γ(ax) =
min{γ(a)|a ∈ A(x) \ A(x ∧ y)} and therefore λγ(x ∧ y, x) = 1. Then
the lexicographically smallest chain in the interval [x ∧ y, x ∨ y] is of
the form

C := x ∧ y = x0 l x = x1 l x2 l · · ·l xk = x ∨ y.

By Lemma 5, ay /∈ A(x2), because x2 covers x. Therefore, λγ(x1, x2) 6=
2. By Lemma 3 there is no repetition in the label sequence, implying
λγ(x1, x2) > 2. For some 2 < j ≤ k, we must have ay ∈ A(xj)\A(xj−1).
Now 1 /∈ {γ(a)|a ∈ A(xj) \ A(xj−1)} for any j > 2, so γ(ay) = 2 =
min{γ(a)|a ∈ A(xj) \ A(xj−1)}.

But min{γ(a)|a ∈ A(x2) \ A(x1)} ≥ 3, so λγ(x1, x2) > λγ(xj−1, xj).
This contradicts the fact that the lexicographically smallest chain in
the interval [x∧y, x∨y] must be increasing for λγ to be an EL-labeling.
Thus, whenever x and y cover x ∧ y, then x ∨ y covers both x and y.
By Proposition 2, this means that L is a geometric lattice. �

We now conclude this section with another characterization of geo-
metric lattices which avoids assuming the lattices are atomic. The
essence will be a reduction to the theorem we have just proven.

Theorem 7. Let L be a finite lattice with n join-irreducibles. If for
every ordering of the join-irreducibles, i.e. every bijective map γ :
J(L) → {1, . . . , n}, the labeling λγ is an EL-labeling then L is a geo-
metric lattice.
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Proof. Assume by way of contradiction that L and λ satisfy all of the
hypotheses of Theorem 6, but that there exists v ∈ J(L) that is not an
atom. Without loss of generality we can take v such that if a ≤ v and
a ∈ J(L) then a is an atom. It is well known (see [12] p. 286) that
in a finite lattice, the join-irreducibles are precisely the elements that
cover exactly one other element. So there exists exactly one u such
that u l v. Furthermore, the set J(u) is entirely composed of atoms
and |J(u)| = k for some 1 ≤ k ≤ n − 1. Let γ be such that γ(v) = 1
and γ(J(u)) = {2, 3, . . . , k + 1}. (Note 2 = k + 1 holds when u is
an atom). Then the lexicographically smallest label sequence for all
chains in the interval [0̂, v] has a descent because the label λγ(u, v) = 1

and 1 < λγ(x, y) for all x l y in the interval [0̂, v]. This contradicts
the fact that every bijection γ : J(L) → [n] induces an EL-labeling,
so no such v can exist. Thus J(L) ⊂ A(L). Since for any finite poset
A(L) ⊂ J(L), L is atomic. �

4. Lexicographic shellability characterization of
semimodular lattices

Let L be a finite lattice with n join-irreducibles. Let J(L) denote the
set of join-irreducibles of L. Let E(L) denote the edges of the Hasse
diagram of L. For x ∈ L, let

J(x) = {w ≤ x|w ∈ J(L)}.
Further, given a map γ : J(L) → [n], let γ(J(x)) denote the set
{γ(w)|w ∈ J(x)}. Then the map γ induces a minimal labeling λγ :
E(L)→ [n] by the rule λγ(x, y) = min{γ(J(y)) \ γ(J(x))}.
Remark 2. Let L be a finite lattice and let u, v ∈ L. Then if u ≤ v,
J(u) ⊆ J(v).

Lemma 8. Let L be a finite lattice, let x, y ∈ L be such that x and y
both cover x ∧ y, but x ∨ y does not cover x. If j is a join-irreducible
satisfying y = (x ∧ y) ∨ j, then j /∈ J(z) for any z covering x.

Proof. Assume by way of contradiction that j ∨ (x ∧ y) = y and j ≤ z
where xl z and x and y satisfy the condition x and y both cover x∧y,
but x∨ y does not cover x. Since xl z we know that x∧ y ≤ z. Then
x∧y ≤ z and j ≤ z imply that y = (x∧y)∨j ≤ z by the definition of a
least upper bound. Now we have x ≤ z and y ≤ z. But then x∨y ≤ z,
contradicting the fact that z covers x. So, j /∈ J(z) for any xl z. �

Lemma 9. Let L be a finite lattice satisfying |J(L)| = n and let x ∈
L. If |J(x)| = k and γ̂ : J([0̂, x]) → [k] is a linear extension of the
subposet of join-irreducibles of the interval [0̂, x], then there exists a
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linear extension γ : J(L) → [n] of the subposet J(L) that restricts to
the map γ̂.

Proof. By definition a linear extension γ̂ : [0̂, x]→ [k] is a map satisfy-
ing the condition that if u ≤ v in [0̂, x] then γ̂(u) < γ̂(v) in the set [k].
Let γ : J(L\ [0̂, x])→ [n]\ [k] be a linear extension map of the induced
subposet of join-irreducibles in the complement of the interval [0̂, x].

If u ∈ [0̂, x] satisfies u ≤ w for w ∈ L \ [0̂, x], then no possible choice
of γ(w) ∈ [n] \ [k] can violate the condition γ(u) < γ(w). Note there
does not exist z ∈ L \ [0̂, x] satisfying z ≤ u for any u ∈ [0̂, x] by
the definition of an interval. So define the map γ : J(L) → [n] by
γ(u) = γ(u) for u ∈ J(L \ [0̂, x]) and γ(u) = γ̂(u) for u ∈ J([0̂, x]).
Then γ is the required linear extension. �

Theorem 10. Let L be a finite lattice with set of join-irreducibles J(L)
satisfying |JI(L)| = n. If for every linear extension γ : J(L) → [n] of
the subposet J(L), the minimal labeling λγ is an EL-labeling, then L is
(upper) semimodular.

Proof. Recall that for a finite lattice L is (upper) semimodular if and
only if whenever s and t cover s ∧ t, then s ∨ t covers both s and t.
Assume by way of contradiction that x and y cover x∧y but x∨y does
not cover x. Now |J(x∧y)| = k ≥ 0. Note that if k = 0 then x and y are
atoms. By Remark 2 there exists a join-irreducible jx ∈ J(x)\J(x∧y)
and a join-irreducible jy ∈ J(y) \ J(x ∧ y).

Let γ be a linear extension of J(L) satisfying the following: let γ
restrict to a linear extension of the interval [0̂, x ∧ y] on the k join-
irreducibles in [0̂, x∧y], e.g. there is a linear extension γ̂ : [0̂, x∧y]→ [k]
that extends to γ (this is possible by Lemma 9) and set γ(jx) = k + 1
and γ(jy) = k + 2.

Then, the lexicographically smallest chain in the interval [x∧y, x∨y]
must be of the form

C = x ∧ y l xl x2 l · · ·xm−1 l xm = x ∨ y

for m > 2, since by hypothesis x ∨ y does not cover x. Now we claim
that λγ(x, x2) = r ≥ k + 3: first, λγ(x, x2) = min γ(J(x2 \ J(x)), and
the labels 1, 2, ..., k + 1 are taken by elements of J(x) which cannot be
in the set J(x2) \ J(x). Furthermore, by Lemma 8, jy /∈ J(x2), so the
label k + 2 cannot be in the set γ(J(x2) \ J(x)). So r ≥ k + 3. But
since J(y) ⊂ J(x ∨ y), jy ∈ J(x`) \ J(x`−1) for some 2 < ` ≤ m. So
min(γ(J(x`) \ J(x`−1)) ≤ k + 2, and we have λγ(x`−1, x`) ≤ k + 2 <
r = λγ(x, x2) and the chain C must have a descent. This contradicts
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the fact the the lex smallest chain in an EL-labeling is increasing. So,
no such pair x and y can exists. Therefore L is a semimodular lattice.

�

5. Concluding remarks

Before turning to concluding remarks, we review a little bit more
background that we will need regarding matroids. If M = M(S) is a
matroid of rank r on a finite set S, the independence complex IN(M)
is the (r−1)-dimensional simplicial complex formed by the family of all
independent sets in M . On the other hand, a geometric lattice is the
lattice of flats, or closed sets, of a matroid. Using our terminology, the
matroid structure of a geometric lattice L is the matroid with ground
set A(L) and the closure operator cl(W ) on a subset W ⊆ A(L) is
cl(W ) = {a ∈ A(x)|x is the join of the atoms in W}.

Remark 3. In [4], there is a result of a similar flavor (Theorem 7.3.4)
concerning matroid complexes: a simplicial complex 4 is the indepen-
dence complex of a matroid if and only if 4 is pure and every ordering
of the vertices induces a shelling of 4. Geometric lattices are also con-
nected to matroids in that a geometric lattice is exactly the lattice of
flats of a matroid. Though it seems interesting to note the analogy
between the necessary hypotheses for Theorem 7.3.4 of [4] and those of
our characterization of geometric lattices, our result is a fundamentally
different result.

Remark 4. Our initial motivation was the question of whether posets
admitting certain types of edge labelings were in fact more general than
geometric lattices, so as to see whether it made sense to generalize
results of [8] from geometric lattices to more general posets with the
types of edge-labelings one has for geometric lattices. Our main result
says that these two classes of lattices are in fact exactly the same, i.e.,
the latter is not actually any larger.

Remark 5. Axel Hultman has informed us that our result may also be
modified to the following statement: Let L be a finite lattice with set
of join-irreducibles P and k = |P |. Then the labeling λγ induced by
each choice of order-preserving bijection γ : P → [k] is an R-labelling
if and only if L is semimodular.

Remark 6. Notice finally that we can restate our first characterization
of geometric lattices as a corollary of our characterization of semimod-
ular lattices. First of all, if L is atomic, the set of all atom orderings
of A(L) is the same as the set of all linear extensions of J(L) because
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A(L) is an antichain. And we simply showed before that requiring
all atom orderings to induce EL labelings precludes the existence of
join-irreducibles that are not atoms.
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