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Abstract. We show that the order complex of any finite lattice
with a chain 0̂ < m1 < · · · < mr < 1̂ of modular elements is at
least (r − 2)-connected.

In [St], Stanley shows that a finite lattice L with a maximal chain
consisting entirely of modular elements is supersolvable and therefore
graded and EL-shellable in the sense of [Bj1]. Hence, the order complex
∆(L \ {0̂, 1̂}) has the homotopy type of a wedge of top dimensional
spheres. In particular, if L has a maximal chain 0̂ < m1 < · · · < mr <

1̂ with each mi modular then its order complex ∆(L \ {0̂, 1̂}) is at
least (r − 2)-connected. We generalize this connectivity lower bound
to chains of modular elements that are not necessarily maximal.

Knowledge about the topological structure of the order complex of
a given lattice can be of use, for example, in the study of subspace
arrangements and in the study of free resolutions. See for instance
[GM], [ZZ], [Bj2], and [GPW]. If instead of determining the homology
entirely, one merely is able to prove a connectivity lower bound, this
already may provide useful information. For example, connectivity
lower bounds for LCM lattices directly translate to upper bounds on
the regularity of a monomial ideal; a connectivity lower bound for
monoid posets gives a bound on the rate for resolving the residue field
over an associated toric ring, i.e. the coordinate ring of an associated
toric variety. Terminology as well as specific results in these directions
may be found, for instance, in [MS], [HRW], [HW], [Pe] and [PRS].

We assume that the reader is familiar with the basic notions from
topological combinatorics. All relevant definitions can be found in
[Bj3]. All lattices we consider here will be finite with minimum ele-
ment 0̂ and maximum element 1̂. One of many equivalent definitions
of modularity in a lattice L is that m ∈ L is modular if for each x ∈ L
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there is an isomorphism

[m, x ∨ m] ∼= [x ∧ m, x]

given by sending each z ∈ [m, x ∨ m] to z ∧ x (cf. [Sc]). Note that
this definition is dual to that given by Stanley in [St], that is, m ∈ L

is modular according to our definition if and only if m is modular,
according to Stanley’s definition, in the lattice L∗ defined by x ≤L∗ y if
y ≤L x. This discrepancy in definitions is harmless, because the order
complex of any poset P is the same as that of P ∗.

There are also instances in the literature in which a weaker notion
of modularity is used, where x is said to be modular if (x ∨ y) ∧ z =
(x ∧ z) ∨ y for all y ≤ z; usually, but not always, this is called left-
modularity. This is not the same as the notion of modularity which we
use, and which is used in [Sc] and [St].

Here is our main result, as mentioned above.

Theorem 1. Let L be a finite lattice with a chain 0̂ < m1 < · · · < mr <

1̂ of modular elements. Then ∆(L\{0̂, 1̂}) is at least (r−2)-connected.

Proof. We proceed by induction on r, the base case r = 0 being
trivial. Now suppose L has a chain 0̂ < · · · < mr < 1̂ of modular
elements with r > 0. Let C(mr) be the set of complements to mr in L.

The elements of C(mr) form an antichain in L. Indeed, assume that
x ≤ y are both complements to any modular element m ∈ L. Then
m ∨ x = m ∨ y = 1̂ and m ∧ x = m ∧ y = 0̂. Since m is modular,
[x ∧ m, x] ∼= [m, x ∨ m] and [y ∧ m, y] ∼= [m, y ∨ m]. Thus

[0̂, x] ∼= [m, 1̂] ∼= [0̂, y],

which is impossible unless x = y, since L is finite.
The Homotopy Complementation Formula of Björner and Walker

(cf. [BW]) now yields:

∆(L \ {0̂, 1̂}) ≃
∨

a∈C(mr)

Σ
(

∆(0̂, a) ∗ ∆(a, 1̂)
)

,

where
∨

denotes wedge, Σ denotes suspension and ∗ denotes join. We
will show below that for each a ∈ C(mr), the lattice (a, 1̂) has a chain
of r − 1 distinct modular elements, namely a ∨ m1, a ∨ m2, . . . , a ∨
mr−1. It follows from our inductive hypothesis that ∆(a, 1̂) is (r − 3)-
connected. Since ∆(0̂, a) is (−2)-connected, the join ∆(0̂, a)∗∆(a, 1̂) is
(r − 3)-connected and its suspension is (r − 2)-connected. A wedge of
complexes, each of which is (r−2)-connected, is itself (r−2)-connected.

It remains to verify the claim that a ∨ m1, a ∨ m2, . . . , a ∨ mr−1 is
a chain of r − 1 distinct modular elements in (a, 1̂). It is well known
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(see for example [Sc, Theorem 2.1.6]) that if m is modular in L and
x ∈ L, then m ∨ x is modular in the interval [x, 1̂]. Set m0 = 0̂. For
0 ≤ i < j ≤ r we have

0̂ ≤ a ∧ mi ≤ a ∧ mj ≤ a ∧ mr = 0̂,

so a ∧ mi = a ∧ mj = 0̂. Thus

[mi, a ∨ mi] ∼= [0, a] ∼= [mj , a ∨ mj ].

Since L is finite and mi < mj , we cannot have a ∨ mi = a ∨ mj .
2

Next is an example of a subspace arrangement with nonshellable
intersection lattice for which our connectivity bound is sharp. There
are many similar examples, as well as numerous examples from group
theory, in which context normal subgroups are modular in the lattice
of subgroups of a finite group.

Example 2. Begin with the braid arrangement in R
n (for n > 2)

generated by hyperplanes xi = xj for 1 ≤ i < j ≤ n. Now add an
additional variable xn+1 and replace the hyperplane xn−1 = xn by the
codimension two subspace xn−1 = xn = xn+1. The dual lattice L∗ of
the intersection lattice L for the resulting subspace arrangement has a
chain

0̂ < (x1 = · · · = xn−1) < · · · < (x1 = x2 = x3) < (x1 = x2) < 1̂

of modular elements which is not contained in any larger chain of
modular elements. Indeed, the only way to enlarge the given chain
is to add the subspace S : x1 = · · · = xn. Let T be the subspace
xn−1 = xn = xn+1. One may check that S ∧ T is the subspace
x1 = · · · = xn+1 while S ∨ T = 1̂, implying [S, S ∨ T ] is the intersec-
tion lattice for the graphic arrangement given by Kn \ {en−1,n} while
[S ∧ T, T ] is the intersection lattice for the graphic arrangement given
by Kn−1. These last two intersection lattices are not isomorphic, so S

is not modular. One can show that ∆(L \ {0̂, 1̂}) ≃ Σ∆(Πn−1 \ {0̂, 1̂}),
and thus ∆(L \ {0̂, 1̂}) is (n− 4)-connected but not (n− 3)-connected.
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